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Abstract—We investigate robust wireless communication in
high-scattering propagation environments using multi-element
antenna arrays (MEA’s) at both transmit and receive sites. A
simplified, but highly spectrally efficient space–time communi-
cation processing method is presented. The user’s bit stream is
mapped to a vector of independently modulated equal bit-rate
signal components that are simultaneously transmitted in the
same band. A detection algorithm similar to multiuser detection
is employed to detect the signal components in white Gaussian
noise (WGN). For a large number of antennas, a more efficient
architecture can offer no more than about 40% more capacity
than the simple architecture presented. A testbed that is now
being completed operates at 1.9 GHz with up to 16 quadrature
amplitude modulation (QAM) transmitters and 16 receive anten-
nas. Under ideal operation at 18 dB signal-to-noise ratio (SNR),
using 12 transmit antennas and 16 receive antennas (even with
uncoded communication), the theoretical spectral efficiency is 36
bit/s/Hz, whereas the Shannon capacity is 71.1 bit/s/Hz. The 36
bits per vector symbol, which corresponds to over 200 billion
constellation points, assumes a 5% block error rate (BLER) for
100 vector symbol bursts.

Index Terms—Antenna diversity, multi-element arrays
(MEA’s), space–time processing, wireless communications.

I. INTRODUCTION

W E investigate wireless communication using multi-
element antenna arrays (MEA’s) at both the transmit

and receive sites to achieve very high spectral efficiencies in
a high-scattering environment. It has been reported [1]–[4]
that MEA’s along with space–time processing can aggressively
exploit multipath propagation effects for communication. We
present a single link study of communication of a user’s signal
when the bit stream is demultiplexed and the transmitted signal
vector components convey distinct bit substreams, one sub-
stream per transmit antenna. The method presented, designed
to be of limited complexity regarding the spatial processing
required, can demonstrate robust high-capacity operation.

The three-step detection processing of the user’s vector sig-
nal that is received in additive white Gaussian noise (AWGN)
brings together some well-established procedures. There is
zero forcing combining of the received signal components
(the value of this type of combining is already established
for space division multiple access systems). Substreams are
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sorted at the receiver based on how “good” their channels
are. The substream with the best conditions is detected first;
its contribution is subtracted from the total received vector
signal. The same process is repeated until all substreams are
detected. Then the original bit stream is reconstituted. Later,
we quantify the communication efficiency possible, observing
that gains offered by increased complexity can sometimes be
modest.

The context of our study is a propagation environment
resulting in significant decorrelation of the electromagnetic
field sampled by the receive array elements. This decorrelation
is exploited to create many parallel subchannels. The number
of effective subchannels is related to both the degree of
decorrelation and the number of antennas. The propagation
environment is represented by a matrix where the th
element is the transfer function from theth transmitter to
the th receiver. As in [1]–[4], we will assume ideal Rayleigh
propagation, meaning that the entries of thematrix are
independently distributed complex Gaussian variables. The
channel, assumed unknown to the transmitter, is learned at
the receiver by measuring the response to a training sequence
[5]–[6]. Only long-term statistical knowledge of the ensemble
of possible channels is assumed to have been fed back to the
transmitter.

We assume burst mode digital communication in which the
channel is static during the burst. We allow that the channel
characteristic may change from burst to burst. Consequently,
channel capacity is treated as a random variable. Some key
applications are fixed wireless and wireless LAN’s.

To facilitate first implementation, various aspects of the dual
site MEA system are kept simple. Narrowband operation is
assumed so that the delay spread can be kept to a small fraction
of the symbol period, and thus the channel characteristic is
nominally flat across the frequency band. We also concentrate
initially on an uncoded system. However, for a sufficiently
long burst, the infinite time horizon idealization common in
information theory provides us with meaningful initial insights
as to what coding would offer for implementations beyond our
current concern.

A feasibility/research testbed implementing the algorithm
will operate at 1.9 GHz with up to 16 transmit and 16 receive
antennas. We specify the burst length at some target block
error rate (BLER). A block error occurs when a burst contains
at least one bit in error. Along with the number of transmit
antennas and receive antennas, a key system parameter is
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Fig. 1. High-level view of a vertical BLAST communication link. Assumptions: narrowband operation, allm constellations are the same size, and the
transmitter does not know the channel instantiation, but the receiver learns it. Specifications:n; � (when m = 1; � is the average SNR between a
transmit–receive pair), probability [error-free burst], andPtot, the total power transmitted out of allm antennas. The number of transmit antennasm and
the quadrature amplitude modulation (QAM) constellation size are optimized for maximum burst throughput.

the average signal-to-noise ratio (SNR),. This is the average
of the SNR’s measured by a probe receive antenna element, as
a test transmit antenna and the probe antenna are independently
moved over their respective volumes. (Alternately, assuming
that the propagation environment changes substantially from
burst to burst, could be defined as the SNR seen by a
single receive antenna averaged over a large number of bursts
from a single transmitter.) We definedwith ,
but for the ideal Rayleigh environment, can be arbitrary
in the definition of so long as the total radiated power
is constrained. Consequently, if is increased, there is
proportionately less power per transmit antenna. Thenis
independent of the number of transmit antennas.

There is exploding literature on related communication
subjects involving spatial processing and/or the related topic of
multiuser detection. References [7]–[30] are a relatively small
but wide-ranging sample.

II. M ATHEMATICAL MODEL FOR

WIRELESS CHANNELS EMPLOYING MEA’s

We take a complex baseband view involving a fixed linear
matrix channel with AWGN. As indicated, although fixed, the
channel will often be taken to be random. Time is taken to be
discrete. A high-level system view is given in Fig. 1. We need
to list more notations and some basic assumptions.

• Noise at receiver : complex -D AWGN with statis-
tically independent components of identical powerat
each of the receiver branches.

• Transmitted signal : the total power is constrained to
regardless of the number of transmit antennas[the

dimension of ]. The bandwidth is narrow enough that
we can treat the channel frequency characteristic as flat
over frequency.

• Received signal : -D received signal so that at
each time, there is one complex vector component per
receive antenna. When there is only one transmit antenna,

the transmitter radiates power , and we denote the
resulting average power at the output of any of the
receiving antennas by .

• Average SNR at each receiver branch: .
• Burst size: : the number of vector symbols in one burst.
• Matrix channel impulse impulse response: the discrete

time response is denoted by the matrix delta function
with columns and rows. So, except for ,
is the zero matrix. Consistent with the narrowband

assumption, we use for the (flat matrix) Fourier
transform of and write suppressing the frequency
dependence. It will be convenient to represent the matrix
channel response in normalized form . Specifically,
related to , we have the matrix , where the equation

defines its relationship to .
Therefore, .

• The ideal Rayleigh propagation environment: for this
environment, the n m entries of the matrix are
outcomes of independently identically, distributed (i.i.d.)
complex Gaussian variables of unit variance. The sum-
mary information mentioned earlier that is fed back to the
transmitter, which is assumed not to knowrealizations,
is the number of receive antennasand the average SNR
.

Using for convolution, the basic vector equation describ-
ing the channel is

(1)

The two vectors added on the right-hand side are complex
-D vectors (2 real dimensions). Using the narrowband

assumption, we simplify, replacing convolution by product
and write

(2)
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III. V ERTICAL INSTEAD OF DIAGONAL PROCESSING

Reference [1] explains the diagonally layered architecture of
an advanced system [diagonal-Bell Labs layered space–time
(D-BLAST)] as opposed to the less complex vertical BLAST
(V-BLAST) system which is our focus here. Space is the

point discrete space defined by the transmit antenna
elements. V stands for vertical, referring to our layering
space–time with successive transmitted vector signals—a se-
quence of consecutive vertical columns in space–time. The
diagonally layered architecture of [1] requires encoding the
transmitted symbol information along space–time diagonals.
There are communication efficiency advantages to such a
diagonally layered architecture. However, advanced coding
techniques, now a topic of research, are needed in this ap-
proach, and such complications were judged to be best avoided
in a first implementation. Moreover, with diagonal layering,
some space–time is wasted at the start and end of a burst.
This boundary waste becomes negligible as the burst length
increases. However, for lengths of initial interest to us, namely,

, the waste would be significant. For the initial
prototype, our limiting of burst length permits us to avoid,
for now, difficult channel tracking issues. Finally, with a
diagonal system, the complication of the careful avoidance
of catastrophic error propagation is a concern. Therefore, we
focus here on the vertical algorithm with no coding.1We will
see that the uncoded vertical architecture often attains a hefty
fraction of the bit rates of the diagonal approach.

IV. THE VERTICAL DETECTION PROCESS

Fig. 1 illustrates V-BLAST. We will take the different
QAM signals to be statistically independent (but otherwise)
identical modulations. Each of the QAM modulated compo-
nents of the vector transmit process conveys a distinct bit
substream. For expositional convenience, we expressas

(3)

and rewrite (2) in the form . Detection
amounts to estimating the QAM components of the vector

from the received vector .
From [1], the three key aspects of spatial processing of

a received vector signal in detection of any substream: i)
interference nulling: interference from yet to be detected
substreams is projected out; ii) interference canceling: inter-
ference from already detected substreams is subtracted out;
and iii) compensation: stronger elements of the received signal
compensate the weaker elements. (See [4] for a highly compact
formulation of the detection process analyzed in detail here.)

We suppress , writing , , and for the -D vectors
, , and at any fixed time . We write for the

matrix which we assume is essentially perfectly known
to the receiver: in practice, it is accurately learned in a training

1An eight-transmit and 12-receiver antenna V-BLAST system is operating
at the Crawford Hill, Bell Labs location in Holmdel, NJ. In initial indoor
experiments at 18 dB SNR and 95% required BLER, 21 bits/symbol in the
form of seven eight-QAM streams has already been achieved (as compared to
24 bits/symbol theoretically possible in ideal Rayleigh propagation). At about
20% rolloff, 21 bits/symbol amounts to 17 bit/s/Hz. At higher SNR’s (22–35
dB) experimental efficiencies of 20–40 bit/s/Hz have been attained.

phase using, say, a burst preamble or midamble. The receiver’s
knowledge of the -D vectors comprising the matrix
will be used in the processes of interference cancellation,
nulling, and compensation. Based on the realization of,
the list of components are reordered with
a parenthesized subscript conveying the order in which the
components are to be detected. So is an

dependent permutation of the components of the vector.
The compensation step provides the optimum permutation for
minimizing the probability of error in the large SNR limit.

Assuming a reordering, we iteratively form-D vectors
called spatial matched filters. These are

used in scalar products to project to a scalar sequence
comprising the decision statistics for .
The need only be constructed once per
burst and the same matched filters reused for each vector
symbol. Fig. 2 shows the processing in the decision process
for in an (8, 12) example. We next explain the iterative
decision process for the general ( ) case.

A. The Interference Cancellation Step

Assume that the receiver has detected the first and
that the decisions were error free. Then we can cancel the
interference from these decided components of. To express
this, it is useful to write in terms of its -D columns so
then . We note that the received signal is

(4)

Defining each of the as that multiplying in
(4), we rewrite using this reordering

(5)

The first square-bracketed sum involves only correctly de-
tected signal components and is subtracted fromin a manner
similar to decision feedback equalization (DFE). We denote
the resulting -D vector

(6)

B. The Interference Nulling Step and the Use
of Spatial Matched Filters

The interference nulling2 step frees the process of detecting
from interference stemming from the simultaneous

transmission of . To avoid this
interference from the as yet undecided components, we
project orthogonal to the dimensional subspace
spanned by . To express this projec-
tion let be the orthonormal set of
vectors obtained from the using the

2In the high SNR asymptote, the advantage of not nulling, but instead
maximizing SNR, plus self-interference, is negligible.
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Fig. 2. Vector symbol by symbol detection. From then-dimensional received signalr, an optimum stack of interference-free decision statistics for them

components of the vector symbolq is formed. Anm = 12, n = 16 example is shown.

Gram–Schmidt process. Denoting the result of the projection
by , we write

(7)

Each of the components of is the sum of a known
multiple of and noise. In so far as processing , we
have the setup of standard maximum ratio combining. So
the decision statistic for is given by a scalar product

with optimized for detection of an -
fold diversity interference-free signal in vector AWGN. To
recall how such a is obtained, note that the noise power
of is proportional to the squared norm . We
can also say that the optimized signal-to-noise ratio SNR
for this decision statistic has the signal power proportional to

. To see why, define to denote what the vector is
in the absence of noise. SNRis optimized when is any
multiple of . This follows by applying the Cauchy–Schwarz
inequality to the signal power term in the numerator of SNR.

C. The Compensation Step: Optimizing the Order of Detection

Next, we discuss the compensation feature. The desired
detector minimizes the probability of making a decision error
in a burst. To minimize this probability, it turns out that we
need to stack the decision statistics for the components
to accord with the following criterion:

maximize minimumSNR (8)

Next, we show that this criterion corresponds to minimizing
the probability of burst error.

1) Establishing the Criterion—Maximize Minimum
SNR : With points in each planar
constellation, the number of constellation points in each

vector is

no. vector constellation points

no. 2-D constellation points[no. substreams] (9)

Let be the probability that a vector symbol has at least
one error. We sum probabilities over thedisjoint events that
register where the first occurrence of a transmitted vector in
error occurs. We get

Erroneous Block

(10)

is obtained by summing probabilities over thedisjoint
events as to where the first stack level in error occurs. If the
errors made at various levels were statistically independent,
one could write

SNR SNR (11)

where is the well-known function (see e.g., [31]) for
the probability of bit error of a two-dimensional (2-D) con-
stellation as a function of SNR for large SNR. Namely, for

-point QAM constellations

SNR

SNR (12)

SNR decays exponentially with SNR, implying that
in the small noise asymptote SNR where SNRis
the minimum of the SNR s in the stack. However, (11) is
not strictly correct since decisions made at lower stack levels
bias decisions at higher levels so independence is not justified.
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Fig. 3. Myopic optimization from the bottom level up gives the global max–min. The example depicts how a stack of 12 interference-free decision
statistics can be improved.

Yet SNR is asymptotically correct. The biases are
asymptotically inconsequential for (11) as we show.

Scale the constellations, and hence the (optimized) decision
regions, to be the same at each stack level. Then, at each level
there is a different AWGN variance , .
For a small noise analysis, take the to share a positive
factor and analyze . We use to denote the
probability that the noise at the th level exceeds threshold
(more precisely—translates the decision statistic outside the
optimum planar decision region of a correct decision).

First, we examine some simpler hypothetical cases. Take
with independent Bernoulli trials at times

until the event that the noise exceeds threshold
occurs. The time until the first threshold is exceeded is
(asymptotically) . For blocks of length , the expected
time to first erroneous block is . Equivalently, the
rate of erroneous blocks is . Generalize to ,
where at the th level, successive trials take place with noise
variance . However, unlike the case that ultimately interests
us, the trials at the various levels are statistically independent
of each of other. There are just cases like the first one
running in parallel with different variances for the trials at the

levels. Let denote the largest of the probabilities .
The time until the first threshold is exceeded is asymptotically

, and again for blocks of length the rate of erroneous
blocks is , which is also the probability of an erroneous
block.

Next, we consider the interesting case when the lower levels
feed decisions to the higher levels for cancellation purposes,
and erroneous decisions are passed up the stack levels. It
is convenient to introduce the artifice of a “genie” that acts
whenever an error is made at a lower level than the level
of the greatest noise variance. The genie, while, say, leaving
such an error in place at the level at which it occurs, corrects
the error only in that the cancellation process is made to
proceed at higher levels without the error. This is nothing
other than the previous case. It is clear that the asymptotic
rate at which erroneous blocks occur is left invariant if we

put the genie back in the bottle. This is simply because the
genie acts in a comparatively asymptotically trivial fraction
of the cases where errors are made. So, genie or no genie,
errors of consequence in the small noise asymptote occur at
the level of greatest noise variance. These errors occur at the
same asymptotic rate whether the genie is present or not.
The rate of erroneous blocks is again, where SNR ,
and so the max–min criterion is established.

2) Myopic Optimization Equals Global Optimization:By
myopic optimization, we mean: starting at the bottom stack
level and continuing iteratively up to the th level, always
choose that decision statistic among all the options that max-
imizes the SNR for that level. With myopic optimization, we
need only consider options in filling the totality of
all stack levels, as opposed to a thorough evaluation of all

stacking options. We next prove that it is in fact globally
optimum to form the stack in a myopic fashion.

Start it at the bottom level (1) and iterate up to level .
Hold the level (1) competition for the best (highest SNR)
decision statistic. Say that some substream, call it, wins.
We will prove that it is optimal to decide first. Suppose that
we do not decide first, instead deciding another substream
first. Let s denote the SNR’s associated with
a stacking that hasat the bottom. Now consider the following
alteration of that stack to produce a new stack. Moveto the
bottom level and displace those components up one level from

up to those at the level occupied originally by. So a simple
cycling of substreams at the bottom was used to make the new
stack. Fig. 3 illustrates the process that we are describing here;
in general, for the special case .

Let S be the SNR’s of the new stack. We now
show that each of the upper case SNR’s is bounded below
by at least one of the lower-case SNR’s. Since substreams
above in the original stack have not changed their level, we
can say thats S for those. For each substream moving
up one level in the stacking, we can say that the newS can
only exceed the originals of that substream. This is because
the imposed constraint of projecting orthogonal tohas been
removed. Certainlys S since won the competition
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(a)

(b)

Fig. 4. (a) Finding the optimum decision statistic vectord[i] for each ofm levels: i = 1; 2; . . . ;m. (b) Search overm � (i + 1) candidates for the
spatial matched filter vector for the best decision statistic at leveli.

for best at bottom of stack. Now S is
clearly one of the S and that particular one of theS is
bounded below by some lower-cases . Since we have shown
that eachS is bounded below by some lower-cases , that
must be true of the minimum of the S . That particular
lower-case SNR is greater than or equal to the minimum of
all the lower-case SNR’s. So SNR
is improved (or remains the same) with the stack change we
just made.

We have shown that myopic optimization at the bottom of
the list can only improve the max–min performance of a list
that was not myopically optimized at the bottom. Look at level
2 and above, and repeat this process. We see that max–min is
achieved by iteratively myopically optimizing up the stack.

Fig. 4(a) is a high-level view of the composition of the
spatial matched filters. Fig. 4(b) refines the view of a key block
that is noted in 4(a). In terms of employing spatial matched
filters for decisions, Fig. 5(a) gives a very high level view,
and a more refined view of a key block of Fig. 5(a) is shown
in Fig. 5(b).

V. CAPACITY PERORMANCE FOR

LARGE NUMBERS OF ANTENNAS

In the large asymptote, the Shannon capacity of a vertical
architecture can be compared with a diagonally layered system.
Here, refers to the number of antennas available at both
the transmitter and receiver. Of course, in referring to the
capacity of a V-BLAST system, we are no longer assuming
each transmitter is sending uncoded QAM. Rather, we are
assuming that each transmitter is transmitting block-encoded
signals. The Shannon limit refers to the greatest error-free bit
rate possible in the limit of long encoded blocks allowing
codes of unlimited complexity. Although we will work in the
framework of ( ) systems, we will use only the number of
available transmitters that maximize capacity.

For background, we briefly digress to look at the capacity of
one of hypothetical subchannels in a Rayleigh environment.
Assume that it is received with -fold receive
diversity, (say in detecting the signal in question we had to
null interference from transmitters). Then, the subchannel
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(a)

(b)

Fig. 5. (a) Optimum bit decisions for each ofm levels: i = 1; 2; . . . ;m. (b) Processing the received vectorr for optimum decisions at leveli.

capacity is where is chi-squared
distributed with degrees of freedom. The expected
value of is . To explore the large limit,
assume that and are fractions of (say that
and ), which is also getting large. It is easy to show
that ( means convergence
in distribution). Therefore, the capacities of the corresponding
sequence of subchannels

. Next, for the asymptotic behaviors of diagonal
and vertical detectors, we will use this same type of approach:
for large capacity limits, we will be representing all receive
SNR’s by their mean, dropping the random contributions to
capacity which go to zero in the limit. The most difficult
case to establish rigorously will be the limiting SNR for a
V-BLAST detector with nulling, cancellation, and reordering.
The Appendix gives a detailed treatment for this case as well as
the simpler cases of nulling only and nulling plus cancellation.

The diagonal asymptotic capacity analysis is similar to
that in [2], where the capacity is obtained by summing the
contributions from each of the transmitters. According to
a basic premise of the vertical architecture, we optimize the
number of transmitters used. The diagonal capacity in bit/s
per available dimension, when using transmitters with

optimally chosen when there aretransmitters available, is

bit/s/Hz/dim

large (13)

Letting , we take the limit as goes to infinity
and rewrite (13) as an integral to express the capacity in terms
of maximization over the set . Partition the
interval [0, 1] into equal subintervals each of size . A
discretization of the function on the th partition is , so
the above sum tends to the following integral which can be
easily evaluated in closed form

bit/s/Hz/dim

(14)

For the vertical architecture, the capacity per dimension
is much the same as for the diagonal, except that it is the
worst of all the transmitted blocks that limits capacity.
This is because in the vertical case, we impose that all
transmitters transmit at the same rate. Moreover, allblocks
must be correctly received for a transmission to be considered
successful. Drawing on the Appendix, for all three forms of
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Fig. 6. Contrast of the Shannon capacities of D-BLAST with V-BLAST versus average received SNR. Results are for the asymptote of a large
number of antennas.

vertical processing, we get the following smaller largelimit
for capacity in place of (14)

bit/s/Hz/dim

(15)

Fig. 6 shows the capacity advantage of diagonal over verti-
cal growing with SNR. Fig. 7 plots the fraction of D-BLAST
capacity attained by V-BLAST versus SNR as well as the
fraction of available antennas used in both cases. It is clear
from (14) and (15) that the optimal for D-BLAST exceeds
that of V-BLAST, and this is borne out in Fig. 7. For 18 dB,

bit/s/Hz/dim while bit/s/Hz/dim so the di-
agonal system has an advantage of about 40%. From Fig. 7, we
see that in this case, the diagonal architecture uses about 97%
of the available channels while the vertical uses about 72%.

Straightforward asymptotic analysis of the extremebehav-
iors of (14) and (15) enables us to conclude that astends to
zero or infinity the ratio tends to one. Although for
large , the difference slowly grows without bound,
the capacity versus curves of and have the same
asymptotic slope. Namely, with every 3 dB-SNR increase, we
add one more bit/s/Hz/dim. Like the corresponding diagonal
case, the total capacity of all subchannels in a V-BLAST
system grows linearly with the number of available antennas
(until the region available for antennas is saturated).

The asymptotic results hint that vertical, although deficient
to diagonal, can provide some interesting capacities. As
gets large, the asymptotic “hardening” of the received SNR’s
seems to imply that the optimal ordering form of V-BLAST

does not serve to improve capacities in the largeasymp-
tote over the weakest form of vertical processing. Indeed,
with increasing , ultimately the relative advantage of doing
more than just nulling when expressing capacity in terms of
bit/s/Hz/dim becomes more and more incremental. However,
next in examples of bit rates for a (16, 16) context, we will see
that V-BLAST indeed offers interesting bit rates, and ordering
and cancellation can be quite important for improving bit-rates
for over what could be attained with nulling alone.

VI. I DEAL PERFORMANCE EXAMPLES

Since we plan to demonstrate extraordinary efficiency, we
probe into what it is theoretically possible for the largest
number of receive antennas accommodated in the experiment.
Specifically, we take , and we will chose to optimize
throughput (denote ). We present examples for an ideal
Rayleigh propagation beginning with (18 dB) and
requiring that 95% of the bursts be error free. We will see what
we can achieve with 100 vector symbol bursts and no coding.
We recall from [2] that the Shannon capacity for (16,16) is
75.5 bit/s/Hz, while the capacity of a diagonal system is 71.1
bit/s/Hz. Those two communication efficiencies assume the
limits of infinite block size and coding complexity. Following
the first set of examples, we will briefly discuss some results
for and .

A. Optimizing Throughput in the ( ) Context

The computer optimization involved iteratively exploring
, and in each case, we used as many bits per
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constellation as we could, until the point where if we used one
more bit, we would violate the 5% outage constraint.1Monte
Carlo-generated realizations were used to get therequired
SNR’s. Starting with , we could support
point constellations or equivalently 7 bit/s/Hz. For , we
could support a 32-point planar constellation or 5 bit/s/Hz. For
16–point constellations or 4 bit/s/Hz, we found that we could
get to seven substreams. For 3 bit/s/Hz, we could support 12
substreams, and that was the maximum higher dimensional
constellation, namely points, or 36
bit/s/Hz. Due do the extraordinary sensitivity expected from
various practical impairments (later we give examples), such
a superabundant constellation would not make a meaningful
ideal for a (1, 16) system, no matter how high the SNR. If
we look to go to still higher values (lower values),
the efficiency decreased: with quatenary phase shift keying
(QPSK), we obtained 28 bit/s/Hz, while for binary phase shift
keying (BPSK), we obtained 16 bit/s/Hz. We conclude that

.

B. A Range of Optimally Designed Systems

Table I includes the optimal results just discussed along
with similarly optimized results at 18 dB SNR for
and for BLER and . The table shows what can
be obtained with uncoded communication for the three cases
of nulling only, nulling plus cancellation, and nulling plus
cancellation plus reordering. At 18 dB, it turns out that the
uncoded maximum throughput systems for which more than
one transmitter is optimal are all realized with multiple eight-
QAM substreams. The only exception is the 10 bit/s/Hz entry
for , which is realized as five QPSK signals. The
parenthesized entries for the and cases represent
degenerate cases where is optimal; that is, the optimal
design was simply a single transmitter solution with-fold
receive diversity. The degeneracy relates to the fact that the
V-BLAST features of nulling, cancellation, and ordering are
meaningless when .

The table also shows and , which are the Shan-
non capacities for vertical and for diagonal architectures,
respectively, in units of bit/s/Hz (not bit/s/Hz/dim). For these
capacities, BLER can be interpreted as outage. It is
apparent for the uncoded cases that for the largervalues,
there can be considerable advantage to doing full vertical
processing including nulling, cancellation, and reordering.
Uncoded V-BLAST makes sense as an approach to quickly
exhibiting extraordinary throughputs for largervalues like

. However, as expected, we pay for using uncoded
communication, and there can be significant value in using
some form of coding in the future. We also observe that the
more difficult to implement diagonal system exhibits capacities
noticeably superior to coded vertical capacities especially for
the and systems. This is because for the lower

values, there is little room for an excess number of receive

1WhenK > 2 and is not a perfect square, we used a regular constellation
with good minimum distance, e.g., for an eight-point constellation, we used a
square with four equilateral triangles attached to the four sides and pointing
outward. The vertices of the square, along with the four triangle vertices that
oppose each of the four sides of the square, made up the constellation.

antennas over transmit antennas. The excess is essential in the
vertical case for improving the low side of the capacity tail in
order to efficiently meet demanding BLER requirements.

If SNR is increased, one adds to the throughputs for 18 dB
the amount (number of 3 dB increments). If SNR is
decreased, one subtracts the same amount from the 18 dB rates.
This scaling follows from the fact that capacity in bit/s/Hz for
each transmit antenna is SNR, where SNR is the
minimum of the SNR’s. As a rough approximation, for
QAM systems, the same scaling applies to the three uncoded
V-BLAST bit rates, but to be precise, one must account for
the altered number of bits in a block in quantifying the bit rate
attainable at a specified BLER.

The highly idealized results for portend enormous
bit rates. Beside AWGN, the only “impairment” is the in-
tersubstream interference. In practice, other real-world effects
come into play, e.g., even assuming narrowband, i.e., that the
symbol period is large relative to the delay spread, and some
level of ISI is unavoidable due to the departure of the transmit
and receive filters from their ideal Nyquist-equivalent transfer
functions. This ISI must be mitigated. In practice, these filters
have nonzero excess bandwidth, which must be figured into
the communications efficiency. (In the initial prototype, 24.3
kilobaud in 30 kHz is used.) Timing error, phase noise, carrier
frequency offset, and DC offset are other impairments that
will degrade performance in practice. Also, in real deployment
scenarios, there is bound to be channel reuse and therefore
interference from other users of the same band.

We have also assumed that the channelis perfectly
known at the receiver and is fixed during the burst and that
the parameter is meaningful over an indefinitely large time
horizon. Even in “fixed” wireless applications, the channel
will only be imperfectly estimated and will incur some change
during the burst. Also, the Rayleigh propagation assumption
may not be met in practice, and correlation of thematrix
entries can cause significant degradation.

VII. CONCLUSION

The flexible simple vertical archecture eases implementation
of an experimental system using MEA’s at both transmit and
receive sites to greatly increase communications efficiency.
The detection algorithm blended nulling, cancellation, and
compensation in the processing of an uncoded vector signal to
make symbol decisions. The compensation involved succes-
sively myopically removing the transmitted signal component
having the best SNR at each stage. This avoided the “curse of
dimensionality” in regard to the spatial dimensions. Despite
the myopic nature of the algorithm, it was globally optimum.

The vertical Shannon capacity was seen to grow linearly
with the number of antennas and to give an interesting fraction
( .72 or more depending on the SNR) of the capacity of
the more complex diagonal architecture. For large SNR, the
vertical architecture had the following scaling property: if

transmit antennas are used, then for each 3 dB coding
gain, the benefit is roughly an additional bit/s/Hz.

In computations for an idealized Rayleigh-like propagation
scenario for 16 receive antennas, the detector was seen to offer
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Fig. 7. Fraction of D-BLAST capacity attainable with coded V-BLAST and fraction of number of transmitters used by D-BLAST and Coded V-BLAST
as a function of average received SNR. Results are for the asymptote of a large number of antennas.

TABLE I
MAXIMUM THROUGHPUTS IN BIT/S/HZ FOR AN SNR OF 18 DB

OPTIMIZED FOR OPTIMIZED FOR

BLER null cancel reord null cancel reord

OPTIMIZED FOR OPTIMIZED FOR

BLER null cancel reord null cancel reord

extraordinary communications efficiency. The theoretical effi-
ciency of 36 bit/s/Hz at an SNR of 18 dB will be reduced due
to practical impairments. Future experiments will quantify this
efficiency reduction beyond the reduction of approximately
20% expected due to filter rolloff.

Note that an ( ) vertical system has a multiuser de-
tection (MUD) analog. The idealized MUD counterpart has

geographically dispersed single antenna users. At the
element receive array, the users are received as precisely
bit synched, precisely the same carrier and with precise power
control. Under these special conditions, our results apply to the
counterpart MUD system. The diagonal architecture does not
compare with this MUD system since the colocation assump-
tion of D-BLAST allows coding across transmit antennas and
that is impractical for the transmitters in the MUD case.

APPENDIX

LARGE ANTENNA COUNT ASYMPTOTIC SNR’s

In each of three detection categories, we quantify the worst
detection performance of the received signals as .
Both and in such a way that where is
fixed ( ). We account for the dependence among the
SNR’s, which given our Rayleigh assumption, are represented
as squared lengths of correlated Gaussian random vectors. We
write for convergence in distribution.

A. Nulling Detection Category

For each of received signal components, there are
squared lengths that are distributed as chi-squared variates
with degrees of freedom. Imparting an arbitrary
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order on these squared lengths and usingfor an index, we
denote them by . We will now show
that . The proof will use
the centered random variables in an
application of the central limit theorem. With given, we
first employ a union bound

In the last step, in conjunction with the central limit theorem,
we also used the standard bound for the complementary error
function: .

B. Nulling Plus Canceling Detection Category

In this category, each element of the sequence of SNR’s
is a chi-squared variate possessing

degrees of freedom, exactly as in the previous case. For these
SNR’s, we can conclude that .

It is apparent that the candidates
are only larger than in the nulling category.

Indeed, there are less interferers to project away from. Since
the set of candidates are
weaker candidates for a minimum than the corresponding
candidates in the nulling category case, we conclude that

.

C. Nulling Plus Canceling Plus Myopic
Reordering Detection Category

Here can differ from the previous two cate-
gories. Nonetheless, the union bound argument used in the
nulling category implies . In the present
category, for each , there are additional candidates
for . These candidates might seem to serve
to yield a value for that is different
from , which is the limit that is
provided by the candidates. However, since
are candidates for the minimum, for each, the presence of
these additional candidates can only yield a possibly
smaller sequence of minima. However, for each, there
cannot be a smaller minimum than in the previous category
because we proved in the text that myopically maximum

gives the globally maximum minimum. We conclude that the
candidates must provide exactly the same limit in
the sense of distribution.that is
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